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ABSTRACT
Current monitoring systems employing single model algorithms face challenges in accurately

recognizing and alerting real-time arrhythmic events in patients with severe cardiac conditions. To

address this issue and improve the detection accuracy of electrocardiogram (ECG) monitoring

systems, this paper introduces a novel arrhythmia recognition model based on Stacking ensemble

learning. This model integrates multiple base learners, including LightGBM, XGBoost, Random

Forest, SVM, and Logistic Regression, and optimizes them using Gradient Boosting as the

meta-learner. Hyperparameters were fine-tuned through grid search, and nested cross-validation

was employed to train the model, ensuring robust predictive performance. The detection results

indicate that the Stacking ensemble model significantly outperforms single models in both

accuracy and stability, offering substantial practical application value for clinical ECG monitoring

and diagnosis.
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1. Introduction

The electrophysiological activity of the heart underpins cardiac contraction

through signal transmission in myocardial fibers, detectable via surface

electrocardiograms (ECGs), essential for cardiac disease diagnosis. This paper

suggests deploying a real-time alert classification algorithm on ECGs to promptly

identify arrhythmias, enhancing monitoring. Advances in AI, notably machine

learning and deep learning, have bolstered cardiac monitoring. Employing LightGBM,

XGBoost, and Random Forest within a Stacking ensemble framework, this study

constructs a multi-model fusion for arrhythmia detection, validated through

cross-validation and performance evaluation.

2. Model construction and experimental data

2.1. Construction of fusion model based on Stacking

This paper utilizes a Stacking strategy for multi-model fusion classification of

arrhythmia detection data, beginning with data preprocessing, feature engineering,

and rule division. Base learners include LightGBM, XGBoost, Random Forest, SVM,

and Logistic Regression, optimized through grid search to fine-tune hyperparameters.

Nested cross-validation trains the base learners, enhancing accuracy and

generalizability. The base learners' predictions feed into a meta-classifier trained with

Gradient Boosting to further increase prediction accuracy. Comprehensive model

performance assessment using accuracy, recall, precision, F1 scores, confusion

matrices, and learning curves confirms that the Stacking approach improves model

generalizability and predictive accuracy[1].

2.2. Experimental data

This paper employs the "MIT-BIH Malignant Ventricular Ectopy Database" to

construct a database of short ECG records, each containing 2-second segments of

ECG signals, for evaluating arrhythmia detection algorithms. The database provides

data of various temporal lengths related to cardiac arrhythmias, facilitating the testing

and comparison of different arrhythmia detection algorithms.

3. Data preprocessing

This paper extracts features from 2-second ECG segments and employs a



six-level risk severity as the target encoding for classification prediction using a

multi-model fusion via Stacking ensemble learning.

3.1. Feature selection

The paper calculates descriptive statistics such as maximum, minimum, mean,

variance, count, median, range, standard deviation, and coefficient of variation for

each 2-second ECG data segment using Python. These statistics comprehensively

extract the characteristics of the data segments, as shown in Table 1.

Table 1. Data of each descriptive statistic

Maximum Minimum Mean … Extreme
difference

Standard
deviation

Coefficient of
variation

15604 8.46E-07 68.88754 … 15604 860.2865 12.48827
9910.7 8.42E-06 42.34318 … 9910.7 557.5368 13.1671
… … … … … … …

4985.3 3.91E-05 49.85327 … 4985.3 376.0898 7.543933
1109.3 8.98E-08 12.36728 … 1109.3 82.59823 6.678771
… … … … … … …

15329 2.12E-08 68.34061 … 15329 843.2414 12.3388
6006.7 1.48E-06 42.70623 … 6006.7 384.0467 8.992757
… … … … … … …

5178.6 6.04E-07 42.97359 … 5178.6 329.8395 7.675401
1647.7 7.94E-05 21.439 … 1647.7 153.988 7.182608
… … … … … … …

322.86 2.92E-07 2.733945 … 322.86 19.5441 7.148681
887.06 1.71E-06 16.58329 … 887.06 92.80475 5.596282
… … … … … … …

573.82 1.69E-06 23.83287 … 573.82 71.46161 2.998447
460.45 1.12E-07 23.97056 … 460.45 70.73555 2.950935

3.2. Determination of target variables

The paper defines six major categories of cardiac arrhythmias as the target

variables. It uses Python to apply ordinal encoding, mapping each category to an

integer that reflects a hierarchy among the categories[2]. The integer values represent

the severity levels of arrhythmia categories, with encoding from 0 to 5, decreasing in

order of severity, as illustrated in Table 2.

Table 2. Encoding of target variables

Coding Class
0 Life-threatening arrhythmia requiring immediate medical attention
1 Life-threatening arrhythmia
2 Life-threatening ventricular arrhythmias



3 Potentially dangerous ventricular arrhythmias
4 Supraventricular arrhythmia
5 No significant risk or normal sinus rhythm

3.3. Handling of outliers and missing values

The paper conducts statistical analysis of the samples using Python, initially

employing box plots for outlier detection and management. Figure 1 and Figure 2

displays box plots of certain features both before and after the removal of outliers,

illustrating the effect of this preprocessing step on the data distribution[3].

Figure 1. Original data box type diagram Figure 2 Data box diagram after outlier
processing

After removing outliers, fill in the missing values of the KNN algorithm, where

the n-highbors parameter is set to 5.

4.Feature Engineering

4.1. Yeo-Johnson

In order to improve the generalization ability of the model and prevent overfitting,

when the absolute value of skewness exceeds 0.05, the data does not conform to the

normal distribution, and it is necessary to perform Yeo-Johnson transformation to

improve the distribution form. Figure 3 and Figure 4 shows the density histogram

before and after partial feature conversion.



Figure 3. Histogram distribution of raw
data

Figure 4. Histogram after Yeo-Johnson
conversion

4.2. Feature screening

Initially, the paper uses the Pearson correlation coefficient to assess linear

relationships between features, with coefficients ranging from -1 (perfect negative

correlation) to +1 (perfect positive correlation). To reduce redundancy, typically only

one feature from a set of highly correlated features is retained. Further, the study

employs the XGBoost algorithm and Python's SHAP library to calculate feature

importance, which indicates the impact of each feature on the target variable. Features

with high importance values are prioritized. These methods help optimize the

structure and performance of the model[4]. Figure 5 and Figure 6 are correlation

analysis and SHAP value calculation.

Figure 5. Feature correlation coefficient matrix heat map



Figure 6. Importance of features

The analysis reveals that the feature "count" has a zero correlation with other

variables and the lowest feature importance in XGBoost, while "range" shows high

correlation with "maximum," "mean," "variance," and "standard deviation" and also

low importance in XGBoost[5]. Therefore, both features are removed to retain the

remaining features. Using the selected features for model training leads to more

accurate and interpretable results.

5. Model training

5.1. Determination of hyperparameters

This study optimized the hyperparameters of various base models through grid

search. Specifically, the LightGBM model parameters optimized included the number

of leaves ('num_leaves'), learning rate ('learning_rate'), maximum depth of the tree

('max_depth'), minimum number of samples in leaf nodes ('min_child_samples') [6],

and the data sampling ratio ('subsample'). For the XGBoost model, adjustments were

made to the maximum depth of the tree ('max_depth'), learning rate ('learning_rate'),

minimum loss reduction required for node splitting ('gamma'), data sampling ratio

('subsample'), and column sampling ratio ('colsample_bytree'). The Random Forest

model's parameters optimized were the number of trees ('n_estimators'), maximum

depth ('max_depth'), minimum number of samples required to split an internal node

('min_samples_split'), and the minimum number of samples required at a leaf node

('min_samples_leaf'). The Support Vector Machine model considered the penalty

coefficient ('C'), influence of the kernel function ('gamma'), and kernel type ('kernel')



[7]. The Logistic Regression model optimized the penalty type ('penalty'), the

reciprocal of regularization strength ('C'), and the optimization algorithm ('solver') [8].

The GridSearchCV explored all parameter combinations, and the best-performing

combinations were selected via nested cross-validation, detailed in Table 3 as the

optimal hyperparameter results.

Table 3. Optimal parameter combination

Hyperparameter Optimization result

LightGBM

num_leaves 31
learning_rate 0.05
max_depth -1

min_child_samples 20
subsample 0.5

XGBoost

max_depth 3
learning_rate 0.01

gamma 0
subsample 0.5

colsample_bytree 0.5

Random Forest

n_estimators 200
max_depth 3

min_samples_split 2
min_samples_leaf 1

SVM
C 1

gamma 0.1
kernel linear

Logistic Regression
penalty 12

C 1
solver liblinear

5.2. Test of model

In this paper, the evaluation indexes of each model were calculated by using the

five-fold cross-validation[9], as shown in Table 4.

Table 4. Cross-validation scores

Accuracy rate Recall rate Precision rate F1
LightGBM 0.9608 0.9633 0.9650 0.9619
XGBoost 0.9829 0.9823 0.9875 0.9836

Random Forest 0.9659 0.9642 0.9689 0.9651
SVM 0.9435 0.9436 0.9479 0.9429

Logistic Regression 0.9492 0.9483 0.9521 0.9484
Stacking 0.9959 0.9950 0.9989 0.9955

In addition, the confusion matrix of each model test set is drawn, which provides a

detailed view of the model training process and intuitively shows the classification



performance of the model[10]. As shown in Figure 7.

Figure 7 Confusion matrix

In summary, the Stacking fusion model is significantly higher than other single
models.

6. Conclusion

The paper developed an arrhythmia detection model based on Stacking that

exceeds the accuracy and stability of single models, showing significant

improvements over existing research in terms of accuracy and robustness. This



ensemble model provides a more precise and reliable solution for arrhythmia

detection. In the future, efforts will focus on optimizing the model by exploring

advanced feature selection and ensemble strategies to enhance its generalizability.

Additionally, the model's effectiveness will be validated through broader practical

applications, particularly in the healthcare sector. Plans also include expanding the

research scope to incorporate a more diverse range of arrhythmia detection algorithms,

aiming to improve diagnostic accuracy and promote optimized patient care and

treatment strategies.
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